
1

Introduction to Information Security
0368-3065, Spring 2015

Lecture 4:
Process confinement (1/2)

Eran Tromer
Slides credit:

Dan Boneh and John Mitchell, Stanford

2

Process confinement

3

Running untrusted code

• We often need to run buggy/unstrusted code:
– Executable code from untrusted Internet sites:

• viewers, codecs for media players, “rich content”, “secure
banking”, toolbars

• JavaScript, Java applets, .NET, flash, …

– Old or insecure applications: ghostview, Outlook

– Buggy legacy software (sendmail, bind, …)

– Checking homework exercises

– Honeypots

– Digital right management

• Goal: if application misbehaves, stop it.
– Kill process, alert user, write to log, report to central service…

4

Confinement

• Confinement: ensure application does not deviate from
pre-approved behavior

• Can be implemented at many levels:
– Hardware: isolated hardware (“air gap”)

• Difficult to manage
• Sufficient?

– Processes in OS
Isolates a process in a single operating system

• Separate spaces: virtual memory, view of filesystem
• System call interface can be controlled (“system call interposition) to

– Virtual machines: isolate OSs on single hardware
Application-level:
– Isolating threads sharing same address space:

• Software Fault Isolation (SFI), e.g., Google Native Code
– Interpreters for non-native code

• JavaScript, Java Virtual Machine, .NET CLR

5

Implementing confinement

• Key component: reference monitor
– Mediates requests from applications

• Implements protection policy
• Enforces isolation and confinement

– Must always be invoked
• Every application request must be mediated

– Tamperproof
• Reference monitor cannot be killed
• … or if killed, then monitored process is killed too

– Small enough to be analyzed and validated

6

Simple process confinement

7

A simple example: chroot

• Often used for “guest” accounts on ftp sites

• To confine the current process, run (as root):

chroot /home/guest root dir “/” is now “/home/guest”
su guest EUID set to “guest”

• Now “/home/guest” is added to file system accesses for
applications in jail

open(“/etc/passwd”, “r”) ⇒
open(“/home/guest/etc/passwd”, “r”)

⇒ application cannot access files outside of jail

8

Jailkit

Problem: all utility programs (ls, ps, vi) must live inside jail
• jailkit project: auto builds files, libs, and dirs needed in jail

environment
• jk_init: creates jail environment
• jk_check: checks jail env for security problems

• checks for any modified programs,
• checks for world writable directories, etc.

• jk_lsh: restricted shell to be used inside jail

• Restricts only filesystem access. Unaffected:
• Network access
• Inter-process communication
• Devices, users, … (see later)

9

Escaping from jails

• Early escapes: relative paths

open(“../../etc/passwd”, “r”) ⇒
open(“/tmp/guest/../../etc/passwd”, “r”)

• chroot should only be executable by root
• otherwise jailed app can do:

• create dummy file “/aaa/etc/passwd”
• run chroot “/aaa”
• run su root to become root

(bug in Ultrix 4.0)

10

Many ways to escape chroot jail as root

• Create device that lets you access raw disk
mknod sda b 8 0
cat malicious-boot-record > sda

• Send signals to non chrooted process
• Reboot system
• Bind to privileged ports (<1024)

• fake NFS (network file system) requests from port 111
• usurp incoming packets to TCP port 80

• Use hard links to files outside the chroot
• Load kernel modules

11

FreeBSD jail

• Stronger mechanism than simple chroot

• To run:

jail jail-path hostname IP-addr cmd

• calls hardened chroot (no “../../” escape)

• can only bind to sockets with specified IP address
and authorized ports

• can only communicate with process inside jail

• root is limited, e.g. cannot load kernel modules

12

Problems with chroot and jail

• Coarse policies:
• All-or-nothing access to file system
• Inappropriate for apps like web browser

• Needs read access to files outside jail
(e.g. for sending attachments in gmail)

• Do not prevent malicious apps from:
• Accessing network and messing with other machines
• Trying to crash host OS

13

System call interposition

for process-level confinement

14

System call interposition

• Observation: to damage host system (i.e. make persistent
changes) app must make system calls
• To delete/overwrite files: unlink, open, write
• To do network attacks: socket, bind, connect, send

• Monitor app system calls and block unauthorized
calls

• Implementation options:
• Completely kernel space (e.g. GSWTK)
• Completely user space

• Capturing system calls via dynamic loader (LD_PRELOAD)
• Dynamic binary rewriting (program shepherding)

• Hybrid (e.g. Systrace)

15

Initial implementation (Janus)

• Linux ptrace: process tracing
tracing process calls: ptrace (… , pid_t pid , …)
and wakes up when pid makes sys call.

• Monitor kills application if request is disallowed

OS Kernel

monitored
application

(Outlook)
monitor

user space

open(“/etc/passwd”, “r”)

16

Complications

• Monitor must maintain all OS state associated with app
• current-working-dir (CWD), UID, EUID, GID
• Whenever app does “cd path” monitor must also

update its CWD
• otherwise: relative path requests interpreted

incorrectly
• If app forks, monitor must also fork

• Forked monitor monitors forked app
• Monitor must stay alive as long as the program runs
• Unexpected/subtle OS features: file description passing,

core dumps write to files, process-specific views (chroot,
/proc/self)

17

Problems with ptrace

• ptrace is too coarse for this application
• Trace all system calls or none

• e.g. no need to trace “close” system call
• Monitor cannot abort sys-call without killing app

• Security problems: race conditions
• Example: symlink: me -> mydata.dat

proc 1: open(“me”)
monitor checks and authorizes
proc 2: me -> /etc/passwd
OS executes open(“me”)

• Classic TOCTOU bug: time-of-check / time-of-use

tim
e

not atomic

18

Improved system call interposition: Systrace

• Systrace only forwards monitored sys-calls to monitor (saves context switches)
• Systrace resolves sym-links and replaces sys-call path arguments by full path to

target
• When app calls execve, monitor loads new policy file
• Fast path in kernel for common/easy cases, ask userspace for complicated/rare

cases

OS Kernel

monitored
application

(outlook)
monitor

user space

open(“etc/passwd”, “r”)

sys-call
gateway systrace

permit/deny

policy file
for app

19

Systrace policy

• Sample policy file:
path allow /tmp/*
path deny /etc/passwd
network deny all

• Specifying policy for an app is quite difficult
– Systrace can auto-gen policy by learning how app

behaves on “good” inputs
– If policy does not cover a specific sys-call, ask user

… but user has no way to decide

• Difficulty with choosing policy for specific apps (e.g. browser)
is main reason this approach is not widely used

	Introduction to Information Security�0368-3065, Spring 2015��Lecture 4:�Process confinement (1/2)
	Process confinement
	Running untrusted code
	Confinement
	Implementing confinement
	Simple process confinement
	A simple example: chroot
	Jailkit
	Escaping from jails
	Many ways to escape chroot jail as root
	FreeBSD jail
	Problems with chroot and jail
	System call interposition�for process-level confinement
	System call interposition
	Initial implementation (Janus)
	Complications
	Problems with ptrace
	Improved system call interposition: Systrace
	Systrace policy

